A PHYCOREMEDIATION APPROACH FOR THE TREATMENT OF DAIRY EFFLUENT

Thesis submitted in Partial Fulfillment of the Degree of Doctor of Philosophy (Ph.D.) to the UNIVERSITY OF MADRAS

By

M. KOTTESWARI, M.Sc., M.Phil.,

PG AND RESEARCH DEPT OF BOTANY, PACHAIYAPPA'S COLLEGE, CHENNAI - 600 030. TAMILNADU, INDIA.

DECEMBER 2012

M. Kotteswari, M.Sc., M.Phil., Asst. Professor in Botany PG and Research Dept. of Botany, Pachaiyappa's College, Chennai - 600 030.

DECLARATION

I declare that the thesis entitled "A PHYCOREMEDIATION APPROACH FOR THE TREATMENT OF DAIRY EFFLUENT" submitted by me for the degree of Doctor of Philosophy (Ph.D) is the record of work carried out by me during the period from September 2009 to August 2012 under the guidance and supervision of **Dr. S. MURUGESAN**, Assistant Professor in Botany, PG and Research Department of Botany, Pachaiyappa's College, Chennai - 600 030 and has not formed the basis for the award of any Degree, Diploma, Associateship, Fellowship, titles in this University or any other University or other similar institution of higher learning.

Station: Chennai- 30

(M. KOTTESWARI)

Date: 11.12.2012

Dr. S. Murugesan M.Sc., M.Phil., Ph.D., F.I.S.E.C., Asst. Professor in Botany

Off : 26412844 Mobile : 98402 76 446

Date: 11.12.2012

CERTIFICATE

I certify that the thesis entitled "A PHYCOREMEDIATION APPROACH FOR THE TREATMENT OF DAIRY EFFLUENT" submitted the degree of Doctor of Philosophy (Ph.D) for by M.KOTTESWARI, is the bonafide record of research work carried out by her during the period from September 2009 to August 2012 under my guidance and supervision and that this work has not formed the basis for the award of any Degree, Diploma, Associateship, Fellowship or other titles in this University or any other University or institution of higher learning.

Place: Chennai-30

(S. MURUGESAN) (GUIDE AND SUPERVISOR)

ACKNOWLEDGEMENTS

To begin with, first and foremost I am very grateful to all mighty Lord Ganesha to shower his blessings on me throughout my life. And one evidence is successfully completion of this discretion work.

With a profound sense of gratitude and humbleness to my worthy and zealot supervisor **Dr.S.MURUGESAN**, Assistant Professor in Botany, Pachaiyappa's College, Chennai-30, for his valuable knowledge, support, cooperation and encouragement given throughout the course of this work. Without his constant help, deep interest and vigilant guidance, the completion of this thesis is not possible. I am really indebted to him for his accommodating attitude, thought provoking guidance, immense intellectual input, patience and sympathetic behavior. I feel a real honour to complete my Ph. D under his kind supervision. I would like to thank him for his inspiration, dedication and friendship throughout this endeavour.

Grateful thanks are due to the **Principal**, Pachaiyappa's College, Chennai, for providing the required facilities.

My special sincere thanks to **Dr.K.M.UMARAJAN**, HOD of Botany, Pachaiyappa's College, Chennai, for his full cooperation and gracious attitude and for providing all facilities to complete this research work in time.

I am grateful to **Dr.S.BHARATHAN**, former Professor of Botany, Pachaiyappa's College, Chennai for his continued encouragement, constructive criticism, and valuable suggestions during the thesis writing.

I would like to pay my deepest gratitude and appreciation to members of the Doctoral committee **Dr.R.DHAMOTHARAN**, Associate Professor in Botany, Presidency College, Chennai-5 and **Dr.S.SARAVANAN**, Assistant Professor in Botany, Pachaiyappa's College, Chennai -30, for their suggestions in my research work and support throughout my study.

I wish to express my sincere acknowledgement for **Prof.N.ANAND**, Pro Vice- Chancellor (R & D), Vels University, for identification of algae.

This thesis is also a fruit of close cooperation among many scientists working in different fields. I am also extremely grateful to **Dr.R.RANJITH KUMAR**, Assistant Professor, Department of Plant Biology and Plant Biotechnology, Sri Chandra Prabhu Jain College, Chennai, who made this project possible with his endless knowledge of algae and wastewater and his valuable assistance, technical suggestions and kind help during the course of my Ph.D studies.

My gratitude is to **Dr. SPM. PRINCE WILLIAM**, Scientist, Solid Waste management division, NEERI, Nagpur for designing the work, encouragement and suggestions given.

Special thanks to all of my teachers who taught me during my academic career. Grateful and sincere thanks are due to **Dr.J.KAMALESWARI**, Associate Professor in Botany, Pachaiyappa's College, Chennai for her guidance and encouragement in the completion of my work.

I sincerely acknowledge to **Dr.N.SHETTU**, Assistant Professor of Zoology, Pachaiyappa's College, Chennai for UV-Vis Spectroscopy analysis and for his valuable help in every possible way.

I am also very grateful to **Dr.T.S.SUBHA**, HOD of Botany, Bharathi Women's College, Chennai for her help in the research work and thesis writing.

My sincere thanks are due to **Thiru.C.H.ASHOK**, Divisional General Manager (Production) of TCMPF Ltd, Avain, Manali, **Mr.V.THANGAPADIAN**, AGM (Engg), **Mr.Md.FAROOK**, Manager, **Mr.A.SHANMUGAM**, Dr Manager (Engg), **Mr.D.SEKAR**, Dy Manager (Engg), **Mr.P.VENUGOPAL**, Jr. Manager (Engg.), **Mr.R.GANDHINATHAN**, Jr Manager (Engg), **Mr.G.MAHENDRAN**, Jr Manager, **Mr.T.G.ANAND**, Jr Manager (Engg.) and **Mr.S.CHANDRABASKAR**, Jr Manager (Engg) for allowing the effluent collection whenever needed.

I am deeply and strongly obliged to members of Sophisticated Instrumentation Centre, Indian Institute of Technology, Chennai for providing the FT-IR and heavy metal analysis. I sincerely thank the members of the TWAD Board, Chennai especially **Mrs.D.CHANDRIKA**, Junior Water Analyst for her guidance and help in doing the effluent analyses and I am also grateful to the TNPCB officials for allowing me to do the heavy metal analysis and for the library facilities. I also thank A to Z Pharmaceutical Laboratory for confirming my biochemical analysis. I also thank Bio-Zone, Chennai, for microbiological analysis.

I realize that the fulfillment of Ph.D. task is a collective effort, which involves the guidance, cooperation and help of my well wishers. I would like to pay greatest thanks to **Ms.S.BHUVANESWARI**, Junior Research Fellow, PG and Research Department of Botany, Pachaiyappa's College, Chennai, without her, I would not have made it through the many late hours of experimentation and the countless drafts that it took to get to this point. I am also highly indebted to my best friends and fellows especially, **Ms.R.ROSY**, and rest of my friends for their assistance, good company, marvelous behavior and friendly attitude.

My personal and very sincerest appreciation goes to my colleagues and dearest friends for their lovely support in all shades of life. They have been very kind and supportive in my course.

I feel incredibly fortunate to have met someone as talented and passionate about algae as Dr.S.NAGARAJAN and Mr.P.ARUL MURUGAN and

Miss.UMAMAHESWARI, CAS in Botany, University of Madras, Chennai and I look forward to what the future of algae will bring. I owe my sincere thanks to **Dr.S.LINGATHURAI,** Entomology Research Institute, Loyola College Chennai. In addition, I would like to thank. **Prof.R.SRINIVASAN**, Assistant Director and **L.AMAR SANTH**, Asst. Librarian, **VIT** University, Vellore for their contribution in editing this thesis. I would like to thank my co-workers and friends at Algology lab, Department of Botany, Pachaiyappa's College, Chennai for their support.

I am also thankful to all the administrative and laboratory staff of the Department of Botany, Pachaiyappa's College, Chennai for their kind support.

Last but not least, I really acknowledge and offer my heartiest gratitude to my parents, sisters and younger brother, for their huge sacrifice, moral support, cooperation, encouragement, patience, tolerance and prayers for my health and success which enabled me to achieve this goal. I would like to thank my family for their love and sacrifice throughout my career and better part of two decades of education.

I thank the Adyar Students Xerox, Kilpauk Branch for the Typing and Laser Printing.

(M. KOTTESWARI)

CONTENTS

1.0	Introduction	1
1.1	Wastewater	2
	1.1.1 Effects of Wastewater on Water Quality	
	1.1.2 Wastewater treatment	
	1.1.3 Basic Wastewater Treatment Processes	
	1.1.4 Advanced Methods of Wastewater Treatment	
1.2	Bioremediation	5
1.3	Microalgae and Wastewater Treatment	7
	1.3.1 Wastewater as a substrate for algal cultures	
	1.3.2 Biodegradation by algae	
1.4	Phycoremediation	13
1.5	Role of Cyanobacteria in Effluent Treatment	17
1.6	Wastewater and other carbon sources for heterotrophic growth of	19
	microalgae	
1.7	Metal pollutants	19
1.8	Harvesting of Microalgae-Cost factor	20
1.9	Key factors – critical to successful application of phycoremediation	21
1.10	Algal growth	21
1.11	Use of strains with special attributes	22
1.12	Challenges associated with Algae-based Wastewater Treatment	23
	Systems	
1.13	Sustainability of Microalgal Wastewater Treatment	24
1.14	Pollution effects of Dairy wastes	25
1.15	Objective and Scope	25
2.0	Materials and Methods	27
2.1	Description of collection site	27
2.2	Collection of effluent Samples	27
2.3	Products	27
	2.3.1 The Manufacturing process	
	2.3.2 Effluent generation	
	2.3.3 Flow from pasteurization plant	
	2.3.4 The flow from the packing bay	
	2.3.5 Characterization of effluent	
2.4	Treatment methods	30
	2.4.1 Biological treatment	
	2.4.2 Treatment and disposal of dairy wastes	
2.5	Pollution effects of dairy wastes	33

2.6	Conventional treatment methods – A Description	33		
	2.6.1 Methods adopted in Dairy effluent treatment			
	2.6.2 Effluent characteristics			
	2.6.3 Effluent analysis			
2.7	Isolation and identification of Cyanobacteria	34		
	2.7.1 Media and Culture conditions			
	2.7.2 Composition of BG11 Medium			
	2.7.3 Composition of CFTRI Medium			
2.8	Remediation bioassay	37		
2.9	Light intensity measurement			
2.10	Microscopic Examination	37		
2.11	Growth measurement			
2.12	Growth monitoring	38		
2.13 Analytical Methods		38		
	2.13.1 Mineral Analysis			
	2.13.2 Evaluating the heavy metal reduction potential of			
	Cyanobacteria in dairy effluent			
2.14	Biological characteristics	39		
	2.14.1 Bacterial count			
	2.14.2 Isolation and identification of Bacteria			
2.15	Growth conditions and selection of Cyanobacteria	40		
2.16	Treatment of Dairy effluent by Cyanobacteria	41		
2.17	Biomass extraction	41		
	2.17.1 Estimation of Chlorophyll			
	2.17.2 Estimation of Carotenoids			
2.18	Biochemical analysis	44		
	2.18.1 Estimation of protein			
	2.18.2 Estimation of total free sugars			
	2.18.3 Estimation of total lipid			
	2.18.4 Amino acid analysis by HPLC			
	2.18.5 Estimation of vitamins			
	2.18.6 Estimation of vitamin-A			
	2.18.7 Antibacterial Assay			
	2.8.17.1 Antibacterial activities of <i>Aulosira</i>			
	laxa and Tolypothrix distorta			
	2.18.8 Antioxidant activities of Aulosira laxa and			
	Tolypothrix distorta			
	2.18.8.1 DPPH radical activity			
	2.18.8.2 ABTS radical cation decolorization assay			

2 10 1 Effect on seed germination and seedling growth	
Toxicity testing of Dairy offluent through Hyperbthalmiethus	
<i>molitrix</i> (Silver carp)	
Statistical analysis	
Description of the Dairy effluent	
A 2.1 Isolation of Cyanobactoria from the Dairy offluent	
3.2.2 Feasibility study	
3.2.3 Selection of Cyanobacteria for phycoremediation of	
Dairy effluent	
3.2.4 Growth rate of Cyanobacteria	
Laboratory study	
3.3.0 Physico-chemical Analysis	
3.3.1 Colour	
3.3.2 Temperature	
3.3.3 Turbidity	
3.3.4 Total suspended solids	
3.3.5 Total dissolved solids	
3.3.6 Total solids	
3.3.7 Electrical conductivity	
3.3.8 pH	
3.3.9 Total alkalinity	
3.3.10 Total hardness	
3.3.11 Calcium	
3.3.12 Magnesium	
3.3.13 Sodium	
3.3.14 Potassium	
3.3.15 Iron	
3.3.16 Free ammonia	
3.3.17 Nitrite	
3.3.18 Nitrate	
3.3.19 Chloride	
3.3.20 Fluoride	
3.3.21 Sulphate	
3 3 22 Phosphate	
3 3 23 Silica	
3.3.24 Chemical oxygen demand	
3 3 25. Biological oxygen demand	
2.2.26 Oil and groups	

3.4	Heavy metals	79
	3.4.1 Aulosira laxa	
	3.4.2 Tolypothrix distorta	
3.5	Bacteriological Examination	81
3.6	Characterization of Dairy effluent using FT-IR spectroscopy	82
3.7	Statistical significance	83
3.8	Value added products from Aulosira laxa and Tolypothrix	84
	distorta	
	3.8.1 Pigment composition	
	3.8.2 Biochemical composition	
	3.8.3 Amino acid composition	
	3.8.4 Vitamins	
	3.8.5 Minerals	
3.9	Antibacterial activities of Aulosira laxa and Tolypothrix distorta	89
3.10	Antioxidant activities of Aulosira laxa and Tolypothrix distorta	90
3.11	Effect of Dairy Effluent (untreated and treated) on Seed	91
	germination	
	3.11.1 Growth parameters	
	3.11.2 Shoot length and leaf area	
	3.11.3 Pigment and Biochemical composition	
	3.11.4 Minerals	
3.12	Toxicity testing of Dairy effluent through Hypophthalmicthys	96
	molitrix	
3.13	Nutritional qualities of live feed organisms	97
3.14	Environmental Impact Assessment	99
4.0	Discussion	100
	4.1 Biodegradation of Diary effluent	
	4.2 Cell growth	
	4.3 Physico-chemical analysis	
	4.4 Heavy metals	
	4.5 Bacteriological Examination	
	4.6 Characterization the Dairy effluent using FT-IR spectroscopy	
	4.7 Value added products from Aulosira laxa and	
	Tolypothrix distorta	
	4.8 Antibacterial activities of <i>Aulosira laxa</i> and <i>Tolypothrix</i> Distorta	
	4.9 Antioxidant activities of Aulosira laxa and Tolypothrix distorta	
	4.10 Seed germination	
	4.11 Pigment and Biochemical composition of <i>P.Mungo</i>	

- 4.12 Effect of dairy effluent on fish toxicity
- 4.13 Nutritional qualities of live feed organisms
- 4.14 Environmental Impact Assessment
- 4.15 General study and Policy recommendations for maintenance, monitoring Dairy effluent including following conclusion could be draw by Phycoremediation Technology using cyanobacteria at large scale

178

i-xxxiv

5.0	Summary
-----	---------

6.0 References

7.0 Annexure

List of Publications Papers Presented at Conferences

LIST OF TABLES

Table.1 Factors that influence algal growth in a High rate algal pond Cyanobacteria are used in the treatment of Dairy effluent Table.2 Table.3 Physico-chemical parameters of Dairy effluent in untreated and treated with A. laxa and T. distorta Table.4 Physico-chemical parameters of Dairy effluent in untreated and treated with S. platensis and S. multiramosum Table.5 Physico-chemical parameters of Dairy effluent in untreated and treated with C. turgidus and N. muscorum Table.6 Physico-chemical parameters of Dairy effluent in untreated and treated with O. animalis and S. turfaceum Table.7 Physico-chemical parameters of Dairy effluent in untreated and treated with *C.indica* and *H. welwitschii* Table.8 Physico-chemical parameters of Dairy effluent in untreated and treated with F. ambigue and A.variabilis Table.9 Physico-chemical parameters of Dairy effluent in untreated and treated with P. ambiguum and C. membranacea Table.10 Physico-chemical parameters of Dairy effluent in untreated and treated with C. licheniforme and algal consortium Table.11a Growth rate of various Cyanobacteria (coccoid forms) in Dairy effluent Table.11b Growth rate of various Cyanobacteria (filamentous forms) in Dairy effluent Table.12 Physico-chemical parameters of Dairy effluent in untreated and treated with Aulosira laxa Table.13 Physico-chemical parameters of Dairy effluent in untreated and treated with Tolypothrix distorta Table.14 Effect of Cyanobacteria in the reduction of heavy metals Table.15 Bacteriological examination of Dairy effluent Table.16 FT-IR Spectral assignments of Dairy effluent Table.17 Pigment composition of Cyanobacteria biomass Table.18 Biochemical composition of Cyanobacteria biomass

- Table.19
 Amino acid composition of Cyanobacteria biomass before and after treatment
- Table.20Quantitative analysis of vitamins of Aulosira laxa and Tolypothrix
distorta
- Table.21Mineral composition of Aulosira laxa and Tolypothrix distorta
- Table.22Antibacterial activity of Cyanobacteria methanolic extracts againstGram-Positive and Gram-negative bacteria presented by inhibitionzone diameter (in mm) and antimicrobial index (in parentheses)
- Table.23
 IC₅₀ values of standard and experimental algae on free radical scavenging system
- Table.24Effect of Dairy effluent on Seed germination in P.mungo
- Table.25Effect of untreated and treated Dairy effluent on early seedling growthin *P.mungo*
- Table.26Effect of algal filtrates on photosynthetic pigments of *P.mungo*
- Table.27
 Effect of algal filtrates on Biochemical composition of *P.mungo*
- Table.28
 Effect of algal filtrates on mineral composition of *P.mungo*
- Table.29Percentage of survival of Hypophthalmicthys molitrix exposed to
untreated and treated Dairy effluent
- Table.30
 Physico-chemical characteristics of Dairy during the experiment
- Table.31
 Effect of Dairy effluent on length of Hypophthalmicthys molitrix
- Table.32
 Effect of Dairy effluent on width of Hypophthalmicthys molitrix
- Table.33Effect of Dairy effluent on weight of Hypophthalmicthys molitrix
- Table.34Biochemical composition of Hypophthalmicthys molitrix exposed
to Dairy effluent
- Table.35Physico-chemical parameters, Dairy effluent and the Impact of
cyanobacterial treatment

LIST OF FIGURES

- Fig.1 Schematic representation of day time WSP operation
- Fig.2 Schematic diagram of a Dairy effluent treatment plant
- Fig.3 Reduction of pollution load in Dairy effluent treated with *A. laxa* and *T.distorta* a) Turbidity b) Total suspended solids c) Total dissolved solids
- Fig.4 Reduction of pollution load in Dairy effluent treated with *A. laxa* and *T.distorta* a) Total solids b) Electrical conductivity c) Increase of pH
- Fig.5Reduction of pollution load in Dairy effluent treated with A. laxa and
T. distorta a) Alkalinity b) Total hardness c) Calcium
- Fig.6Reduction of pollution load in Dairy effluent treated with A. laxa and
T.distorta a) Magnesium b) Sodium c) Potassium
- Fig.7Reduction of pollution load in Dairy effluent treated with A. laxa and
T. distorta a) Iron b) free ammonia c) Nitrite
- Fig.8Reduction of pollution load in Dairy effluent treated with A. laxa and
T. distorta a) Nitrate b) Chloride c) Fluoride
- Fig.9 Reduction of pollution load in Dairy effluent treated with *A. laxa* and *T. distorta* a) Sulphate b) Phosphate c) Silica
- Fig.10 Reduction of pollution load in Dairy effluent treated with *A. laxa* and *T. distorta* a) COD b) BOD c) Oil and grease
- Fig.11Reduction of heavy metals in Dairy effluent treated with A. laxa and
T. distorta a) Copper b) Total chromium
- Fig.12Reduction of heavy metals in Dairy effluent treated with A. laxa and
T. distorta a) Zinc b) Lead c) Nickel
- Fig.13 Reduction of heavy metals in Dairy effluent treated with *A. laxa* and *T. distorta* a) Cadmium b) Arsenic c) Mercury.
- Fig.14 FT-IR spectrum of untreated Dairy effluent.
- Fig.15 FT-IR spectrum of treated Dairy effluent a) A. laxa b) T. distorta
- Fig.16 Quantitative analysis of Chlorophyll content in the control and treated *A.laxa* and *T. distorta*
- Fig.17 Quantitative analysis of Carotenoid content in the control and treated *A.laxa* and *T. distorta*

Fig.18	Quantitative analysis of Carbohydrate content in the control and treated	
	A. laxa and T. distorta	
Fig.19	Quantitative analysis of Protein content in the control and treated	
	A. laxa and T. distorta	
Fig.20	Quantitative analysis of Lipid content in the control and treated	
	A. laxa and T. distorta	
Fig. 21a)	Essential and non essential amino acid content in A.laxa before and after	
	treatment	
b)	Essential and non essential amino acid content in T.distorta before and	
	after treatment	
Fig.22a)	Amino acid content of Cyanobacteria biomass on Dairy effluent treated	
	with A. laxa	
b)	Amino acid content of Cyanobacteria biomass of dairy effluent	
	treated with T.distorta	
Fig.23	Quantitative analysis of vitamin content in the control and treated	
	A. laxa and T. distorta	
Fig.24	Quantitative analysis of the mineral content in the control and treated	
	A.laxa and T.distorta	
Fig.25	Scavenging activities of A.laxa extract on DPPH radical	
Fig.26	Scavenging activities of A.laxa extract on ABTS radical	
Fig.27	Scavenging activities of <i>T.distorta</i> extract on DPPH radical	
Fig.28	Scavenging activities of <i>T.distorta</i> extract on ABTS radical	
Fig.29	Effect of algal filtrates on photosynthetic pigments of <i>P.mungo</i>	
Fig.30	Effect of algal filtrates on Biochemical composition of P. mungo	
Fig.31	Effect of untreated and treated Dairy effluent in mineral composition of	
	P.mungo	
Fig.32	Biochemical composition of Hypophthalmicthys molitrix untreated and	
	treated with Dairy effluent	

LIST OF PLATES

Plate.1	Study of the map area and location of sampling station (Madhavaram,
	Chennai)
Plate.2	Topo sketch of Madhavaram colony, Chennai
Plate.3	a) Inlet effluent from factory b) Settling tank-I c) DAF method
	d) Settling tank-II
Plate.4	List of Cyanobacteria isolated from Dairy effluent and Cyanbacteria
	taken from Laboratory culture
Plate.5	Cyanobacterial growth in Dairy effluent
Plate.6	Dairy effluent treated with Cyanobacteria compared with control
Plate.7	Dairy effluent treated with Cyanobacteria compared with control
Plate.8	Dairy effluent treated with Aulosira laxa compared with control
Plate.9	Dairy effluent treated with Tolypothrix distorta compared with control
Plate.10	Antibacterial activity of cultured Aulosira laxa and effluent treated
	Aulosira laxa
Plate.11	Antibacterial activity of cultured Tolypothrix distorta and effluent
	treated Tolypothrix distorta
Plate.12	Seed germination and seedling growth of <i>P.mungo</i>
	a) Untreated effluent b) treated effluent with A. laxa
Plate.13	Seed germination and seedling growth of <i>P.mungo</i>
	a) Untreated effluent b) treated effluent with T.distorta
Plate.14	Experimental set-up in the laboratory for toxicity study of fish treated
	with Dairy effluent

ABBREVIATIONS

Short Names	Descriptions
ABTS	2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
АРНА	American Public Health Association Standard Methods
ATP	Adenosine triphosphate
BG11	Blue Green Medium
BGA	Blue green algae
BHT	Butylated hydroxytoluene
BIS	Bureau of Indian Standards
BOD	Biological oxygen demand
BSA	Bovine serum albumin
CFTRI	Central Food Technological Research Institute
COD	Chemical oxygen demand
СРІ	Chemical processing industries
DAF	Dissolved air flotation
DOC	Dissolved Organic Carbon
DPPH	2,2-Diphenyl-1-picrylhydrazyl
E.T.P	Effluent treatment plant
EDTA	Ethylene diamine tetra acetic acid
FTIR	Fourier transform infrared spectroscopy
HPLC	High performance liquid chromatography
HRAP	High rate algal ponds
IC50	Half maximal inhibitory concentration
mg/l	Milligrams per liter
MHA	Mueller Hinton agar
NA	Nutrient Agar
NTU	Nephelometric turbidity units
OPA	Orthopthaldehyde
PBPs	Phycobilliproteins
PS-II	Photo system II
RE	Removal efficiency

Short Names	Descriptions
RNA	Ribonucleic acid
RO	Reverse osmosis
ROS	Reactive oxygen speceis
R _t	Retention time
SF	Synthetic fiber
SPE	Solid-phase extraction
TCA	Trichloro acetic acid
TDS	Total dissolved solids
TEA	Triethylamine
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
TSS	Total suspended solids
TUc	Toxic Units (Chronic toxicity)
V/W	Volume/Weight
W/V	Weight/Volume
WSP	Wastewater Stabilization Ponds
WWTPs	Wastewater treatment plants
μS/cm	Micro Siemen